
Static Analysis of C Programs

Guillaume Brat
brat@email.arc.nasa.gov

Arnaud Venet
venet@email.arc.nasa.gov

Kestrel Technology
NASA Ames Research Center

Moffett Field, CA 94035

Agenda

• Motivation
• Introduction to Static Analysis

– Definition
– Defect classes
– Applicability issues
– Specialization
– Analysis of MPF

• C Global Surveyor
– Fact sheet
– CGS phases
– Example

• Conclusions

A float overflow causes the crash of Ariane 501

Motivation

A flag badly reset caused Mars Polar Lander to crash on Mars

I shouldn’t have turned
off the engine so soon…

Cost of Losing Missions

• Mars Polar Lander: > $150M
– Development + Operations: $120M
– Deep Space 2 probes: $30M

• Mars Climate Orbiter: ~$85M
– Development: $85M
– Operations: $5M

• Mars Surveyor 98 (MPL + MCO) $328M
– Development: $193M
– Launch: $92M
– Operations: $43M

• Ariane 501: > $500M
– Investment over 10 years: $7B
– Payload value: $500M

Static Analysis

• Static progam analysis consists of
automatically discovering properties of a
program that hold for all possible
execution paths of the program

• Static analysis is not
– Testing: manually checking a property for

some execution paths
– Model checking: automatically checking a

property for all execution paths

Static Analysis

the analysis is done
without executing the program

Static analysis offers compile-time techniques for predicting
Conservative, and computable, approximations to the set of values

arising dynamically at run-time when executing the program

all possible values
(and more) are computed

C Global Surveyor uses abstract interpretation techniques
to extract a conservative system of semantic equations
which can be resolved using lattice theory techniques
to obtain numerical invariants for each program point

Is Static Analysis Useful?

• Optimizing compilers
• Program understanding
• Semantic preprocessing:

– Model checking
– Automated test generation

• Program verification
– Discovering errors without executing the

programs

Program Verification

• Check that every operation of a program
will never cause an error (division by zero,
buffer overrun, deadlock, etc.)

• Example:
int a[1000];
for (i = 0; i < 1000; i++) {

a[i] = … ; // 0 <= i <= 999
}
a[i] = … ; // i = 1000;buffer overrun

safe operation

Defect Classes

• Static analysis is well-suited for catching
runtime errors
– Array-out-bound accesses
– Un-initialized variables/pointers
– Overflow/Underflow
– Invalid arithmetic operations

• Also for program understanding
– Data dependences
– Control dependences
– Slicing
– Call graphs

Defect Classes for DS1

• Defect classes for Deep Space One:
– Concurrency: race conditions, deadlocks
– Misuse: array out-of-bound, pointer mis-

assignments
– Initialization: no value, incorrect value
– Assignment: wrong value, type mismatch
– Computation: wrong equation
– Undefined Ops: FP errors (tan(90)), arithmetic

(division by zero)
– Omission: case/switch clauses without defaults
– Scoping Confusion: global/local, static/dynamic
– Argument Mismatches: missing args, too many

args, wrong types, uninitialized args
– Finiteness: underflow, overflow

Issue 1: Incompleteness

• Discovering a sufficient set of properties
(e.g., numerical invariants) for checking
every operation of a program is an
undecidable problem!

• False positives: operations that are safe
in reality but which cannot be decided safe
or unsafe from the properties inferred by
static analysis.

Issue 2: Precision

• Precision: number of program operations
that can be decided safe or unsafe by an
analyzer
– Precision and computational complexity are

strongly related
– Tradeoff precision/efficiency: limit in the

average precision and scalability of a given
analyzer

– Greater precision and scalability is achieved
through specialization

Specialization

• Tailoring the analyzer algorithms for a specific
class of programs
– flight control systems
– digital signal processing, …

• CGS is specialized for the MPF s/w family
• Precision and scalability is guaranteed for this

class of programs only
– However, CGS works for every C program
– But precision (and scalability) might not be as good

for every C program as for MPF-based s/w

Practical Static Analysis

PolySpace
C-Verifier

C Global Surveyor
(NASA Ames)

DAEDALUS

Coverity

GENERAL-PURPOSE
ANALYZERS

SPECIALIZED
ANALYZERS

Scalability (KLOC)

1000

500

50

Precision
80% 95%

Analysis of MPF

• Analyzed 3 modules (~20KLoc each) of C code from
the MPF flight software with PolySpace

• 80 % Precision
– 80% checks have been classified (correct or incorrect) with

certainty
– 20% warnings: need to be covered by conventional testing

• Found 2 certain errors in 30 minutes
– But, average run is 12 hours
– Average time spent manually analyzing RTE is 0.5 hours

• CGS analyzes all 140 KLoc of MPF in 1.5 hours with an
80% precision
– Some array bounds are not know by CGS because they are

passed dynamically in messages

Analysis of DS1

Polyspace:
analyzing 20-40 KLoc modules

took 8-12 hours
with an 80% precision

C Global Surveyor:
analyzing all 280 KLoc of DS1

took 2-3 hours
with a 90% precision

CGS fact sheet
• Static analyzer for finding runtime errors in C programs

– Out-of-bound array accesses
– Non-initialized variables
– De-referencing null pointers
– Tested on MPF and DS1 flight software systems

• Developed (20 KLoc of C) at NASA Ames in ASE group
– A. Venet: arnaud@email.arc.nasa.gov
– G. Brat: brat@email.arc.nasa.gov

• Runs on Linux and Solaris platforms
– RedHat Linux 2.4
– SUN Solaris 2.8

• Analysis can be distributed over several CPUs
– Using PVM distribution system

• Results available using SQL queries
– To the PostgreSQL database
– Browser-based graphical interface

mailto:arnaud@email.arc.nasa.gov
mailto:brat@email.arc.nasa.gov

Example

dbm_ex.c

Main () {
int i,j;
volatile k;

for (i=0; i<8; i++) {
for (j=0; j<I; j++) {

k++;
}

}
return;

}

Setting up Analysis

• Creating a database
– initdb cgsDB

• Starting the database in a separate shell
– postmaster –i –D cgsDB

• Starting the PVM distribution system
– pvm conf
– Where conf lists all available machines

• Go to source directory: say src/
• Creating the intermediate form

– cgsfe dbm_ex.c
– The file dbm_ex.cil is created in src/CGS/

Initialization

• First, CGS reads the CIL files and prepare
for the analysis
– cgs init CGS/dbm_ex.cil

• In the database, one can see file and
function tables:
– psql src
– select * from file_table;
– select * from function_table;

Building Equations

• The second of step of CGS consists of
building the semantic equations
abstracting the behavior of the program:
– cgs build <options>

• This creates a table of equations in the
database
– Local numerical invariants available in DB
– select * from num_inv_table where
function=<name>;

Bootstraping

• This phase builds an abstract graph of the
memory usage in the C program
– cgs bootstrap <option>

• In the database the following information is
now available:
– Call graph
– Memory graph, e.g., which global pointers

points to what memory cell

Solving the Equations

• The next step is to solve the equations
using the pointer analysis done in the
previous phase
– cgs solve <options>

• The following information is now available
in the database:
– Pointer table
– All numerical invariants for all program points

ABC Analysis

• The only currently available analysis is the one
checking the out-of-bound array accesses
– cgs abc

• Results are available in the database
– select * from abc_result_table;
– Results are coded:

• G for green: the access is correct
• R for red: the access is incorrect
• O for orange: the access may be incorrect
• U for unreachable: dead code

Analysis Script for MPF

• cgs init CGS/*.cil (62s with eight 2.2MHz CPUs)
• cgs build –I –e –m Heap_alloc:2 –m IpcQ_Create:? –m

BuggerMgr_alloc:? –s int-in-mem (527s)
• cgs bootstrap –c –k 3 –s taskSpawn:5 (445s)
• cgs solve –c –f –n (892s)
• cgs solve –c –b (471s)
• cgs solve –c –f –n (857s)
• cgs abc (510s) => roughly 1 hour for 60% precision
• cgs solve –c –b (526s)
• cgs solve –c –f –n (848s)
• cgs abc (503s) => roughly ½ hour for 80% precision

Conclusions

• Static analysis tools can be used to verify the absence of runtime
errors in NASA code
– No need for input test cases
– Complete coverage of all data accesses (pointer aliasing) and execution

paths
• Static analysis works well for errors such as

– Out-of-bound array accesses
– Un-initialized variables
– De-references of null pointers
– Some invalid arithmetic operations

• We have built a scalable, yet precise, static analyzer for C programs
– Tested on MPF (140KLoc) and DS1 (280 KLoc)
– Next test: MER (650 KLoc) and other NASA mission code
– Available on Linux and Solaris platforms

• We plan on developing a static analyzer for MDS code
– Will work for a simplified version of C++
– Tentative availability date: 2005

	Static Analysis of C Programs
	Agenda
	Motivation
	Cost of Losing Missions
	Static Analysis
	Static Analysis
	Is Static Analysis Useful?
	Program Verification
	Defect Classes
	Defect Classes for DS1
	Issue 1: Incompleteness
	Issue 2: Precision
	Specialization
	Practical Static Analysis
	Analysis of MPF
	Analysis of DS1
	CGS fact sheet
	Example
	Setting up Analysis
	Initialization
	Building Equations
	Bootstraping
	Solving the Equations
	ABC Analysis
	Analysis Script for MPF
	Conclusions

